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PROJECT STATEMENT

Objectives
(a) Develop a general mathematical and computational mode! that
can describe the flow of semisolid materials
(b) Study various flows through modeling and simulation in order
to validate the modeis and to study the flow behavior at the ievel
allowed by the mathematicai modeis. Obtain insight into the buik
flow of semisolid materiais and help identify the infiuence of

various flow parameters on the final product.

Strategy

Developed a general phenomenological mathematical model that describes the flow
of viscoplastic materials with shear and time dependent properties and used actual
experimental data to fit the model parameters.

ACHIEVEMENTS TO DATE

The following tasks were completed:
o Development of mathematical and computational models
i ] AlAarmma b - I PR, fem e s o nm
¢ Study of basic flow geometries and development of processing maps
i, Fav cnmaioalisd mambnlo;m] Blaca: fombim m a¥iin ol s
» Document the stability for semisolid material flow into a simple cavity
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Abstract

In this paper we investigate the interaction of a two-dimensional
jet of a Herchel-Bulkley fluid w1th a vertical surface at a distance
L from the die exit. This problem also simu i t;es the early stages

fi t mensi i in purpose of this
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1 Introduction

a)

Materials that exhibit no deformation below a finite applied sh
(7,) are known as Bingham plastics [1]. Examples of such materials in-
clude paint, slurries, aqueous foams, pharmaceutlcal products, pastes, poly-
meric solutions, paper pulp, food substances like margarine, mayonnaise and
ketchup [2], colloidal suspensions (3], plastic propellant doughs [4], drilling

fluids (5], and semisolid materials [6].



The motivation of the present work is our interest in the processing of
semisolid slurries. These are two-phase slurries whose behavior can be rep-
resented using a Herschel-Bulkley fluid model. In processing of such slurries
filling patterns are often irregular and unpredictable, pointing to the exis-
tence of possible instabilities. Here, we investigate the “toothpaste” behavior
which is a typical flow insta'bility observed in semisolid slurry processing. Fig-

ure 1 shows an experlmental observation of such an 1ns'cabmty as shown,
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thxs mstablhtv and the toothoaste behav1 when forced out of its tnhe From
a practical point of view such 1nstab1ht1es are undesirable and can lead to

non-uniformities in the parts being made. Investigations by Mldson et al.
[7, 8] provide further evidence of these instabilities, and demonstrate exper-
imentally that slow filling yields the “best” die filling behavior, with mostly
laminar flow, and the least amount of material folding. In general, these
instabilities originate at the point where the filling front in the form of a
jet meets the wall of the cavity. Therefore, the jet-vertical wall arrangement

ntvvrnannta grall tha Aannlir cbaone ~F S5 € _ O TY ____ti_
chosen here represenvs weu tne €ariy stages o1 Iing oI a 4-1J cavity. To our
knowledge no similar investigation has been reported in the literature

Several rheological equations and yield criteria have been proposed [9, 10,
11] to describe the stress-deformation behavior of materials exhibiting a yield
stress. The most commomy used model is the Bingham model [1, 12, 13],

chial e el Y s 1o AvraccEH ac
hl h 1kk l/t:ubUl ld«I 1Ul Fady lb G)(plebbﬁu as

"
i

=0 for v<m7, (1)
— /.A ) To\ 2 £ 7o
_l_=\’['t‘-,-}’)’ or 7T>7, (4)
=~ \'"5 )4
where 4 = (Vu + VuT) represents the rate of strain tensor, 7 the extra stress
tensor, 7, the yield stress and 7 the viscosity of the deformed material. 7
and ¥ are respectively the second invariants of the extra stress and rate of
strain tensors, defined as:
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The rheological behavior of a Bingham fluid is characterized by two di
flow regimes: if 7 < 7, the material b ha s as a rigid solid. If 7 > 7 it flows
with the apparent viscosity g, =1+ %

The Herschel-Bulkley model is a generalization of the Bingham model
that takes into account changes in the effective viscosity with the applied
shear rate. The Herschel-Bulkley model assumes that the effective viscosity
upon deformation follows a power-law behavior:

ANl
= KY

n : 4)
where n and & are the power-law and consistency indices, respectively. The
fluid behavior is shear-thickening for n > 1, and shear-thinning for n < 1.
For n = 1, the Herschel-Bulkley model reduces to the Bingham model with
the consistency index equivalent to the viscosity.

The two distinct regions (yielded (7 > 7,) and unyielded (7 < 7)) of the
fluid are separated by the “yield surface” defined as the surface where the
local stress is equal to the yield stress. In numerical modeling, in addition
to the non-linearities in the governing equations, an inherent difficulty is the
discontinuity in the constitutive relation. Due to the presence of % in the
denominator of Eq. (2), the apparent viscosity becomes unbounded at van-
ishing shear rates. Also, while caiculatmg the velocity field the shape and
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modified versions of Eqs (1) and (2) have been proposed [15, 16, 17, 18].
Keunings [19] reviews current developments in the field of computatlonal rhe-
ology applied to the prediction of the flow of polymeric liquids, i.e., highly
non-Newtonian materials, in complex geometries. Many of the reviewed pa-
pers are representative of current trends in the field of numerical modeling
of Herschel-Bulkley fluids.
For numerical modeling purposes, a common approach is to approximate
the rheological behavior of the fluid to be valid uniformly at all levels of stress.
Papanastasiou [15] introduced a regularization parameter m that controls the
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T o= [ﬂ 4+ 7 A (5)
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The parameter m has dimensions of time. This constitutive relation is ex-

pressed in terms of three independent material parameters, 7,, &, and n,

which are determined from experimental data. The Herschel-Bulkley behav-
ior is approximated for relatively large m values. According to Eq. (5) for
¥ =~ 0 the apparent viscosity is finite, given by 14, = (7 + m7,). The con-
stitutive relation is then expressed as T ~ (7 + m7,)y. Papanastasiou [15]
validated this model on several simple flows such as one-dimensional channel
flow, two-dimensional boundary layer flow and extrusion flow. The accu-
racy and effectiveness of this model in representing Herschel-Bulkley fluids
has also been demonstrated by Elwood et al. [20] Mitsoulis and Abdali
21}, Tsamopoulos et al. [22], Blackery and Mitsoulis [23] and Burgos et al.
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Experimental data reported by Ellwood et al. [20], Keentok et al. [25]
and Dzuy et al. [26] actually demonstrate that a continuous model pro-
vides a better approximation to experimental data than the ideal model.
Therefore, it is postulated that the ideal Bingham model may be only a the-

oretical idealization. Recent investigations by Blackery and Mitsoulis [23],
Beaulne and Mitsoulis [27], Papanastasiou and Boudouvis [28] concentrate on
problems that invelve Bingham and Herschel-Bulkley fluids. In these studies
the material was also modeled using Papanastasiou’s regularized constitutive
equation

In a recent study, Alexandrou et al. {[29] investigated filling of a 2-D
cavity by Bingham fluids. They examined the relative importance of iner-
tial, viscous and yield stress eumt“ on the filling profiles. They identified
five characteristic filling patterns: “mound,” “disk,” “shell,” “bubble” and a
“transition” between that of “mour d” and “bubble” patterns. A summary

of these different flow behaviors is shown in Fig. 3. These characteristic
flow patterns highlight the important role of the finite yield stress in Bing-
ham fluids. Experimental studies confirmed the existence of the numerically
obtained patterns; the “mound,” “disk,” and “shell” patterns have been
observed by Paradies and Rappaz [30] in semisolid processing. Recent ex-
perimental results by Koke et al. [31] also confirmed these patterns by using
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2.1 Governing Equations
The schematic of the problem considered here is shown in Fig. 4. The
2-D geometry is characterized by the inlet section (length [ and height H).
The material is injected in the die from the left side and hits the vertical solid

surface at a distance L away. The flow was modele d using the conservation
of mass and momentum for an incompressible fluid:

V.ou=0, (6)
[Hu 1
plg+u-Vu| =V.g, (M
ot =
L Jd
where u he velocity vector, p the density of the fluid, and ¢ the total

g=-PL+L.

Here P represents the total pressure, [ the unit tensor, and T the viscous
ress tensor. The body force per unit volume due to gravity was neglected



2.2 Non-Dimensionalization
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The set, of governing equations (Egs. (6) and (7)) were non-dimensionalized
g geq (Egs. (6) (7)) non-dimensionalized
using:
x; t u P 1 1
* 1. * . . ® . * . * . *
x1 T t Y /rr ! u = rr 1 P ] g - —“I.J g - _g7 (8)
11 /o Uo To To™ o

where H is taken as the inlet height and U, the average inlet velocity. Due
to the non-dimensionalization the imposed volumetric flow rate is Q* = 1.
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governing equations 1n a dimensionless form
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is the total non-dimensiona.

stress tensor. According to Egs. (9) and (10)
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the constitutive equation (Eq. (5))
2 i in—1 2 79 )
T=To+KY =T +6|7]" %, (12)

where 4 is the shear rate, and 7.5¢ = & | ¥ |~ is the effective viscosity.

Therefore, the Reynolds and Bingham numbers are generalized as:

o pUS™Myge o T H" .
Re = ~———— and Bi= . (13)
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where 4" is the dimensionless rate of strain tensor, ¥* its second invariant,

and m* the dimensionless growth exponent, which are respectively defined
as

- . ry

. 1 . vy m
’)’* = 7 —=; ’}’* = 77:‘7:‘:'2:, m* = ..0- (15)
= U/H= (Uo/H) H

Equation (14) has only two independent material parameters (B¢ and n),
whereas Eq (5) had three (k, 7,, and n). Hereafter, for convenience, the
asl:erlsk (*) 'ropped from the non-dimensional variables and all physical
ties 1 ned are implicitly dimensionless.

The flow is established by applying a fixed dimensionless volumetric flow
rate (i.e., Q=1) at the inlet with a parabolic velocity profile imposed at the
entrance plane of the inlet. The inlet length is fixed at a sufficient distance
[ so that the flow becomes fully deveioped prior to reaching the exit of the

T, 21 4 1

die. In this s uay the non-dimensional xengm of the inlet was nxea ati =5

As mentioned earlier, different lengths L were used in order to study

L1 01 . faat]

the infiu uence or Lms geometrical pa,ra,mecer on the sr,abmty of the jet. The
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the classical mixed-Galerkin finite element method with nine-node rectan-

gular elements. The resulting non-linear system of equations was linearized
using a Newton-Raphson iteration procedure. For converged results in the
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essary at each time step
A detailed presentation of the mixed-Galerkin finite element discretization
r : 1 1 ~ 1 fn Pave ] ~Anl
or the extrusion problem can be found in {20, 32, 33]. The nonlinear system
of equations resulting from this analysis is then solved by Newton-Raphson
itaratian Tha anatial diceratioaticn radiiang tha ant ~F antiatiana +4 o avabam
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of ordinary differential equations
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where q = [u1(y, 2,t),n1(y, 2,t), ..., hn, (2, )] is the vector of all the time-
dependent nodal unknowns, R is the column vector of the time-dependent
Galerkin residuals. The time derivatives are discretized by a standard back-
ward difference scheme,

1
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Thus all the nodal unknowns of the velocity components and pressure are
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he fact that the free surface is a material surface

E
=
n &
> o,
]
=}
—~
f—)
3
UJ
- 5
[}
::1
5_
<
[¢]
jo¥
- &
- 8
=
.
g
o
[}
o+
@
LT
(on
~<
c 2
a
g
<+
(e}
P
E
=g
=
03]
@]
- 3
—
T

Licr o Ffonndal LnﬂL ...... rqA ar 901 Jacrnlae o3 b IT. 3 (o7l ML 4o T
vy & 110l1vdl u:uuuque lO‘:I:, IJ, OUJ ucvelopeu Uy noou lOlJ 111€ Lessellaulonn
i indated at everv iteration with the newlv found free giirfare The ini
i0 uyuau\,u v CVUIJ 1UT1IQUIVIIL VWivil LilT 110 W1 AVULIU 11TT OSuiriauvo A 11T 111~
tial conditions are those of a jet from its steady state. The initial velocity
and pressure fields are determined from the steady-state counterpart of the

problem at the initial configuration.

4 Results

In this work, we concentrate on a proble

In ork, ntrate on a equivalent to that of die fill-
ing, i.e., the interaction of a Herschel—Bulkle fluid jet and a vertical surface
at a distance L from the die exit and we study the interplay between in-

ertia, viscous drag and yield stress, or as expressed in terms of force per

8



unit depth, F; = pU2H, F, = 9U,, and F,, = 7,H respectively (Fig. 5).
Non—d'mensional analysis shows that fhe flow denepds on two dimensionless

F, | F, ratio. A third chome is the Saint-Venant number which indicates the
importance of the yield stress effects relative to inertia forces (F,, /F) and
which is defined as:
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nly two of these three parameters are independent The appro-
's depends on the flow regime being analyzed. The
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The parameter m in the regularized model was set to a value of m = 1000,
which was found to be high enough to insure results independent of m. The

1

reported results are also mesh and time-step independent. A more pertinent

otiidv o a affact af o an tha sectivary nftha ragis Yo narn ko friinA 34 [1Q 94l
study of the effect of m on the accuracy of the results can be found in {13, 24y.
The power-law index n was set to a value of n =1 as in [29]

Figure 7 shows the results for conditions similar to those in [29]. The five
typical flow behaviors reported in [29] have been reproduced here as well,
provmmg thus further evidence on the existence of these patterns. Table 1

arizes the flow parameters for the flow patterns shown in the aforemen-

Re | Bi | FlowPattern
500 | 10 | Shell

6 0.1 | Disk

0.5 | 0.1 | Mound

1 3 | Bubble

10 | 1.7 | Transition

Table 1: Flow parameters used for the displayed je
geometry).

The figure also shows the topography of the yielded and unyielded re-
gions. As shown in the figure, only the “bubble” and “transition” patterns



exhibit significant unyielded zones. Therefore the first three patterns behave
in a manner consistent with a viscous fluid. The “bubble” and “transition”
patterns, though, are expected to be influenced by the yield stress effects.
As we will demonstrate below, flow instabilities are primarily connected to
these two patterns.

The following results examine the interaction of the Herschel-Bulkley jet
with a vertical wall as a function of rheological and geometrical parameters.
Numerical simulations of flows that in real life are unstable may fail to predict
flow instabilities. This is due to the almost perfect symmetry of numerical
results, and due to the fact that numerical errors take a long time to grow
to a magnitude that can trigger instabilities. Therefore, it is customary
to introduce an artificial disturbance to disrupt the symmetry of the flow.
This artificial instability is typically very small, and it is applied for a short
duration. Here, a small disturbance is introduced in the flow by imposing
an asymmetric velocity profile at the inlet for a short time At, beginning
at the moment the jet reaches the vertical wall (defined as t = 0 in the
following). For ¢ > At, the inlet velocity was kept constant and symmetric.
In both the symmetric and asymmetric cases the volumetric flow rate was
kept constant. The flow field and the jet stability are found to be independent
of the magnitude and the duration of the asymmetry.

The finite-element mesh used in the simulations is refined around zones
that are sensitive to flow singularities and where gradients are large (die exit
and end-wall). The case n # 1 is considered at the end of the present study.
The unsteady simulation is initiated at the time where the jet hits the vertical
wall (t = 0). The initial conditions were taken from the steady solution of
the problem for the configuration when the jet is about to touch the wall.
The geometry used here includes an inlet section (H = 1, I = 5), and a
vertical wall at a distance L from the exit of the die. Results are also shown
for variable values of L. Typical jet-wall interactions obtained numerically
are shown in Figs. 8 and 9, as sequences of ‘snapshots’ of the jet profile,
where ¢ is the non-dimensional time.

Figure 8 shows the jet behavior for the L = 10 geometry at a low Reynolds
number (Re = 1) and at a moderate Bingham number (Bi = 3). For a
symmetric velocity profile at the inlet (i.e., no disturbance), these conditions
lead to a “bubble” pattern. Here, when the jet emanating from the inlet
section reaches the vertical wall, it grows as a “bubble” up to a dimensionless

10



as the “toothpaste effect. For the discussion that follow s such ehavm r is
labeled as “unstable”.

3 svad fan Do — E A D2 1 ) N
The flow shown in Fig. 9 is obtained for Re = 5 and Bi = 1. For
both symmetric and asymmetric flow conditions the jet grows in a manner

consistent with a “transition” pattern. Therefore, the initial disturbance has
no impact on the stability of the jet, and no noticeable difference can be
observed between the symmetric and asymmetric cases. In the discussion
below this flow behavior is labeled as “stable”.

Figure 10 shows a complete map of the jet profiles as a function of the
Reynolds nd Bingham numberq for the range 0.5 < Re < 50, 0 < B:i < 40

occur. The estxmated boundary between these two zones has been sketched
in in order to demarcate the range of Re and Bi which they correspond to.
On this map, the symbols A, e, M, ¥ represent respectively the “mound,”
“disk,” “bubble” and “transition” patterns. The hollow symbols ((J, and
V) represent the cases discussed in detail (Figs. 8 and 9). As speculated,
while “bubble” pattern leads to unstable Jet behavior, “sheli 7 “disk” and

e ot o [

nound” patterns remain stable and most of the transi tion” cases 1eaa to

other patterns It is clear from the results that the mstablhtxes are 1ndeed
the result of the finite yield stress and the way yielded and unyielded regions
interact with each other.

. L . - .
As mentioned earlier, it is possible to express the results in terms of
he Samt—Ve-ca.nt number as shown in Fig. 11. In th e square

correspond to unstable behaviors. The hollow markers Oa ) corresnond
to the cases shown in Figs. 8 and 9. The advantage of cons1der1ng the Saint-
Venant number is that it is independent of the characteristic length scale
parameter H, and is expressed in terms of fluid properties and kinematics of

the flow.
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So far the length L was kept constant. Howev:
teristics depend also on the length f the die L. Th » distance
between the die exit and the vertical wall was estabhshed b using three
different lengths L = 10, 15 and 20. Figure 12 highlights this effect on the
stability of the jet for given rheological parameters (Re = 1, Bi = 0.7). The
jet behavior is either stable and symmetric (Fig. 12(a), L = 10) or unstable
and toothpaste-like (Fig. 12(b), L = 15, and (c), L = 20). This demon-
strates that the longer the die, the more likely it is to observe the toothpaste
instability. Figure 13 summarizes this behavior in a manner similar to Fig.
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overall ]et stablhtv is conﬁrmed the longer L, the more likely it is to observe
toothpaste-like instabilities.
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The results shown are for Bingham fluids (n = 1). However, once the yield
stress is exceeded, ;.erscheL—Bulmey fluids flow either in a shear-thinning or

another to a shear thlckemng fluid (n = 1.5). For both cases the Iength was
set to L = 15. Figure 14 shows the overall stability behavior as a function
of n. Again, limiting lines separate stable and unstable behaviors. The solid
line represents the n = 1 case while the dashed line and the dashdotted line

stand for the n = 0.5 and n = 1.5 cases, respectively. A shift between the
three limiting lines can be observed: me smaller t;he power—law mdex the
. Fa)

all) for large values of Bi. This is

behaves more hke a solid wver little of the fluid deforms.

5 Conclusions
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existence of five characteristic flow patterns (“shell,” “disk,” “mound,” “bub-
ble” and “transition”) that have been observed both experimentally and nu-
merically. By controlling flow parameters, one may be able to a priori fix jet
behavior to lead to desirable quality and properties of the final parts.

In actual Herschel-Bulkley flows, the injection process is very sensitive
to flow instabilities which may lead to irregular and unpredictable filling
patterns. This undesired behavior is likely to happen at distinct combinations
of flow parameters. Stability maps of the injection process have been drawn
as a function of these parameters. It was concluded that the most unstable
pattern is that of “bubble” and to a lesser degree that of the “transition”
pattern, primarily due to the effects of the yield stress.

Acknoledgments: Partial support for this study was provided by Alu-
minium Pechiney, France.
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Figure 1: Flow instability in SSMP: toothpaste behavior (Courtesy of Alu-
minium Pechiney).
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Figure 2: Flow instability in SSMP: toothpaste behavior (Courtesy of Alu-
minium Pechiney).
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(c) disk (d) bubble (e) transition

Figure 3: Summary of the flow patterns observed in 2-D die filling [29].
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Figure 5: Schematic of the “toothpaste” behavior in a simple cavity.
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Geometry and finite element mesh.

Figure 6
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Figure 8: Toothpaste behavior, Re = 1, Bi = 3, L = 10. The disturbance is
imposed from ¢ = 0 until ¢ = 1.5.
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Figure 9: Stable jet behavior, Re = 5, Bi = 1, L = 10. The disturbance is
imposed from t = 0 until ¢t = 1.5.
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Figure 10: Stability of the jet when hitting a vertical suface (L = 10), the
Reynolds and Bingham numbers being the control parameters. A-"mound”
pattern; o-"disk” pattern; l-"bubble” pattern; V-"transition” pattern. The
hollow symbols (0], and V) represent the cases discussed in detail and pic-
tured on the map. The estimated boundary between the stable and unstable
behaviors has been sketched in. Stable and unstable behaviors are respec-
tively below and above this limiting line.
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Figure 11: Stability of the jet when hitting a vertival surface (L = 10),
the Saint-Venant and Reynolds numbers being the control parameters. W-
stable pattern; A-unstable pattern. The hollow symbols ([0 and A) represent
the cases pictured on the map. The estimated boundary between the two
behaviors has been sketched in.
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Figure 12: Stability of the flow (Re = 1,Bi = 0.7) for three different jet
lengths. (a) L = 10, (b) L = 15, (c) L = 20.
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Figure 13: Estimated stability limits for different jet lengths. L = 10 (solid
line), L = 15 (dashed line) and L = 20 (dashdotted line).
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understanding of microstructure evolution during commercial processing
conditions is critical for optimization and control of semi-solid processing.

In this study, various semi-solid billets including MHD, GR (Dy addition of
Ti-B or Si-B alloys), SIMA, new MIT and UBE processed tenals were
evaluated. Processing conditions investigated include d"‘ nt processmg
temperatures during continuous heating, as well as isothermal holding for
different time at commercial forming temperatures.

Image analysis was carried out to quantify the semi-solid microstructure
Three important characteristic parameters--shape factor, particle size of
Alpha particles, as well as the amount of entrapped liquid within the Alp pha
phase were measured in this study. ‘

cally grain refined billets have reiatively high entrapped liquid
conter i rlng commerciai forming conditions, the entrapped liquid
t
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auy accounts for 15-30% of the totai liquid phase for grain
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ets, and 8-15% for SIMA and MHD biilets.

e fo “mation of the entrapped liquid can be attributed to the coalescence
of the broken dendrite arms upon reheating SEM analysis reveals that
ere are two types of entrappea liquid in nature. One is entrapped in

on wumn tne Alpna pnase and tne other is entrapped in 2D but is
lsoxatea entrappea liquid consists of extremely fine eutectic grains (in
er of severai: mlcrometerS), and a ot of small oxide spheroids have
e n identified as the nuciei for the fine eutectic grains.

Higher processing temperature tends to decrease shape factor value and
entrappea liquid content, however, it also increases the Alpha particle size
and the runoff of liquid phase during semi-solid forming. A favorite
temperature range for aluminum semi-solid billets is between 580-590°C.
For grain refined billets, 585-590°C is recommended.

Isothermal holding leads to a speroidization and a coarsening process of
Alpha particles. Analysis on quantitative data points out that an optimum



isothermal holding time is between 2-8 minutes. For grain refined billets,

the upper limit is recommended.

5. Specifically, both processing temperature and _soth |
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significant lnﬂuence on the entranoed liquid con
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mal hnldmn have a
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lncreasmq processing temperature or isothermal h olding time decreases

entrapped IIQUId content of GR billets considerably. However, processmg
the

temperature and isothermal holding time show little effect on
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entraooed liquid content of SIMA and MHD billets.

Appendix A is a detailed report on the quantitative microstruc
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charactenzatlon of various semi-solid billets.
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The rheological properties of semi-solid metal slurries are strongly dependent on
their microstructure. Specifically, our previous studies identified that three
characteristic microstructural parameters are critical in determining rheological
behavior of aluminum semi-solid slurries. They are

1. Particle size of the Alpha phase,
2. Shape factor of the Alpha particles, and
3. Entrapped liquid content within the Alpha patrticles.

Using the MPI image analyzer, we quantified microstructual evolution of various
semi-solid billets during commercial forming conditions. In report PR-01-#1, we
presented our results on A356 billets manufactured by both MHD and GR
processes. This report presents our recent results on new MIT, SIMA (strain-
induced melt activation), SiBloy (grain refined by addition of Si-B alloys) and UBE
materials. Specifically, we compared the quantitative data of all these materials
during commercial processing conditions, including continuous heating and
isothermal holding at a commercial forming temperature. Therefore, this report
provides a comprehensive knowledge base in understanding the effect of
processing conditions and material genealogy on the microstructure evolution
and rheological properties of various semi-solid metal slurries.

1. EXPERIMENTAL

1.1 Materials

The semi-solid billets evaluated include MHD, GR (by additi

alloys), SIMA, new MIT, as well as UBE processed materials.

designations and composition. Sliced samples with approximatel



thickness each were cut directly from the billets. Figure 1 illustrates the
experimental procedures.

Table I: Chemical composition of the alloys investigated

Composition, %

Alloy Si Mg Cu Mn Fe
A356 (MHD) 6.92 0.18 0.09 0.05 0.1
A356 (GR) 6.85 0.33 0.11 0.05 0.1
SiBloy (GR) 6.84 0.29 0.0005 0.003 0.07
A357 (SIMA) 6.61 0.53 - 0.01 0.1
A356 (MIT) 7.27 0.38 0.01 --- 0.1
Al-Si-Cu (UBE) --- --- — - ---

1.2 Processing Conditions

Processing conditions investigated in this study include continuous heating and
quenching samples at different temperatures in the two-phase region, as well as
isothermal holding at 582°C and quenching samples at different holding time, as
shown in Figure 2.

The first series of experiments dealt with the effect of processing temperature
on semi-solid microstructure during continuous heating in the semi-solid state.
The average heating rate was about 49°C/min.

The second series of experimehts were designed to investigate the effect of
isothermal hold on microstructural evolution at a temperature commonly used in
commercial forming operations (582°C). Holding time varied from 1 to 64
minutes.

- 1.3 Microstructure Characterization

Metallographic observations were made on the water-quenched samples. The
specimens were etched with Keller's reagent after mounting, grinding, and
polishing.

Microstructure characterization was performed using optical microscopy and
image analyzer (microGOP2000/S). Three specific microstructural parameters




were measured to quantitatively characterize the semisolid microstructures. They
are

1. particle size of the Alpha phase, D
2. shape factor of the Alpha particles, SF ,
3. entrapped liquid content within the Alpha particles, V¢

The particle size (D) is determined by

D =2x_[|= ¢}

Where A is the area of the particle. The average particle size is the mean value
of the total numbers of particles measured.

The shape factor (SF) is defined as

SF = P’ 2
47A

Where P is the perimeter of the particle. For a perfectly globular shape, SF is
equal to 1. The more irregular the particles, the higher the shape factor value.
The shape factor values reported here are the mean values of the total numbers
of particles measured.

Specifically, we found that there are two types of entrapped liquid in nature. One
is entrapped within Alpha particles in isolation, and the other is entrapped within
the Alpha particles in 2D, but is connected to the intergranular eutectic in 3D. The
entrapped liquid content (V;) here is defined as

AgL
Vi ————— % 100% )

ALiquid

Where Ag_ is the area of the entrapped liquid in isolation, ALiquig is the area of the
entire liquid phase including the intergranular eutectic phase, the entrapped liquid
in isolation, as well as the entrapped liquid in connection to the intergranular
eutectic. Since most entrapped liquid has a spherical shape, here the mean
entrapped liquid content in 2D can be considered as an approximate volume
fraction value in 3D.

In order to obtain results of statistical significance, more than twelve images were
measured for each sample. In addition, since there is significant difference in



microstructural scale throughout MHD A356, GR A356 and SiBloy ast
we analyzed semi-solid microstructures at twelve different Iocatu on the
section, which cover the whole region within a radius.
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Microstructural evolution of various semi-solid billets as a function of material

genealogy and processing temperature is presented b low in section 2.1.

Microstructure evolution as a function of material genealogy and is

holdlnq time at 582°C is presented in sectlon 2 2 This is fQII

LI v

From a rheological standpoint, an “ideal” semi-solid microstructure is composed
of small, round Alpha particles containing no entrapped liquid and
homogeneously distributed in a eutectic phase, as illustrated in Figure 3. The
small size of the Alpha particles is beneficial for the casting of thin-walled parts,
while a more spherical shape, and the absence of entrapped liquid are critical for
the improvement of the slurry flow properties during die filling.

Figure 4 compares typical as-cast microstructures of various semi-solid billets. It
can be seen that their as-cast microstructures are quite different. The as-cast
microstructure of GR billets (by addition of Ti-B or Si-B alloys) is a dendritic
structure with a very fine scale, while the microstructure of MHD billets is a
mixture of dendritic and rosette-like structures. SIMA billets show typical
deformed microstructure with a lot fine Mg,Si particles. The new MIT processed
billets, however, have a globular Alpha structure, which is formed due to a rapid
mechanical stirring and a strict cooling rate control during billet casting.

Upon reheating, the above billets show quite different microstructural evolution.
Figures 5 and 6 give the typical semi-solid microstructures of all these billets at
580°C and 585°C, respectively. Visually, there are significant differences among
them in terms of the shape and size of the Alpha particles, as well as the
entrapped liquid content within the Alpha phase. Detailed image analysis results
are given below.



2.1.1 Entrapped Liquid Content

The entrapped liquid within the Alpha phase has a significant influence on the
rheological behavior of semi-solid slurry. As the entrapped liquid does not
participate in the deformation during die filling, it has the effect of decreasing
“effective” liquid fraction, and thus flow properties.

Figure 7 details the evolution of entrapped liquid as a function of processing
temperature and material genealogy. It can be seen that
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liquid content than MHD billets. The entrapped liquid content in Ti-B
refined billets can account for as high as 36% of the liquid phase at 578°C.
During commercial forming temperature range between 580-590°C, the
entrapped quuid content in GR billets varies between 15-30%, which is 2-3

times mgner than in MHD biliets
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Processing temperature has a significant influence on the entrapped liquid
content of GR billets. With increasing temperature, the entrapped liquid
content decreases dramatically, however, processing temperature shows
little effect on the entrapped liquid content of MHD and SIMA billets.

No entrapped liquid was found in MIT and UBE processed billets.

2.1.2 Particle Size

Figure 8 details the evolution of particle size as a function of processing
temperature and material genealogy. The quantitative data shows that

Higher processing temperature tends to increase particle size, but the
effect is not significant in commercial forming temperature range (580-
590°C).

The Alpha particle size in grain refined billets (by addition of Ti-B or Si-B
alloys) is much larger than in MHD, SIMA and MIT processed billets.
Among them, the SIMA billets have the smallest Alpha particle size, and

thao ranna hatuaan RN_QN 1ir in tha
very uniform size distribution, falling in the range between 50-80 um in the

temperature range investigated.

lnterestmgly, processmg temperature has no influence on Alpha partlcle
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grain refined billets (GR A356), the particle size distribution in Si-B refined
billets is more uniform.



2.1.2 Shape Factor

Figure 9 details the evolution of shape factor as a function of processing
temperature and material genealogy. It can be seen that

Durmn commercial fnrmmn temperature range (580-590°C), shape factor
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values of all the seml-sohd billets decrease wrth mcreasung temperature
indicating that higher forming temperature leads to a better spheriodization
of Alpha particles.

As shown in Figure 9, SIMA billets have the smallest shape factor value,
corresponding to the best spheroidized Alpha particles. Whereas, Si-B
reﬁned billets have the highest shape factor value, thus corresponding to

the most irregular shape of Alpha particles. This is consistent with
microstructure observations.

2.2 Microstructural Evolution During Isothermal Holding at 582 °C

Figures 10 and 11 give the semi-solid microstructures of various billets
isothermal holding for 2 minute, and 32 minute, respectively. A rapid evolution of
Alpha particles towards a globular structure was seen in MHD, SIMA and MIT
biliets, whereas relatively slow spheroidization was observed in GR billets. This
can be clearly seen from the image analysis results given below.

2.2.1 Entrapped Liquid Content

Figure 12 gives the evolution of entrapped liquid content as a function of
isothermal holding time and material genealogy. The results show that

Isothermal holding has a significant effect on the entrapped liquid content
of GR billets (by addition of Ti-B or Si-B alloys). With increasing isothermal

holding time, the entrapped liquid content decreases considerably.
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Isothermal holding, however, shows little influence on the entrapped liquid
content of MHD and SIMA processed billets. Again, no entrapped liquid

1indar ientharmal haldina Aranditinne
was found in MIT processed billets under isothermal holding conditions.
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2.2.2 Particie Size
Figure 13 gives the evolution of particle size as a function of isothermal holding
time and material genealogy.

e As expected, isothermal holding leads to coarsening of Alpha particles.
Specifically, a good linear dependence between particle size and
isothermal holding time was found in GR (by addition of Ti-B alloys), MHD,
MIT and SIMA processed billets.

o Interestingly, isothermal holding do
particle size of Si-B refined blllet . Witt
the particle size of Si-B refined bl"
160 um), even isothermal holding for
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n.recessm t m.pera..s.re and isothermal holding time is most likely related
to the lon.g-term grain refinement effect of Si-B alloys found by ACRC
researchers.

2.2.3 Shape Factor
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Figure 14 gives the evolution of shape factor as a function of isothermai holding
irvas A b mamial vavm sty 14 e b i -
time and material genealogy. It can be seen that

pid spheroidization process usuaily “‘urs in the first ‘-2 minute
e H PO

e Si-B and Ti-B grain refined billets have higher shape factor values than the
other billets, corresponding to a more irreguiar shape of Alpha particles.

Moreover, isothermai nomlng shows littie effect on the spheroidization of
Aipha pariicies in GR biiiets, partlcularly for Si-B grain refined billets.

o Specifically, a significant difference in shape factor values has been
observed throughout the grain refined billets. Usually, the microstructures
at billet center have higher shape factor values than those at billet edge,
indicating that the speroidization process at billet center is relatively slow.



2.3 Entrapped Liquid Analysis
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mount of the entrapped liquid is strongly dependent
ucture of the billet. A fine dendritic as-cast structure
form high volume of entrapped iiquid with both circular and

ile a rosette-like as-cast structure gives rise to
iate voiume of giobuiar entrapped iiquid. if the as-cast biiiet has a
se (for example, the MIT billet), one can obtain semi-
ure compietely free of the entrapped liquid upon reheating
(compare Figure 4d with Figures 5d and 6d).
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*» Specificaily, SEM observations clearly show that there are two types of
entrapped liquid in nature. As shown in Figure 16(a), one is entrapped in
isolation within the Alpha particies, and the other is entrapped in 2D but is

onnected to the intergranular eutectic in 3D. This can be easily identified
by a comparison between the entrapped liquid and the intergranular
eutectic. in fact, the entrapped liquid, which is connected to the
intergranuiar eutectic in 3D, has exactly the same morphology as the
intergranuiar eutectic phase.

(@)

e More importantly, an enlarged view of the entrapped liquid in isolation
reveals that the entrapped liquid indeed consists of many extremely fine
eutectic grains, as shown in Figure 16(b). The grain size is in order of
several micrometers.

e Further SEM and EDAX analysis points out that there are many small
oxide spheroids inside each eutectic grain, as shown in Figure 16(c). The
small spheroids serve as nuclei for eutectic grains, thus leading to the
formation of the extremely fine eutectic grains.



Based on the above observations, it is logical to assume that the origin of the
entrapped liquid is due to the coalescence of the broken dendritic arms formed
either by MHD or grain refinement treatment. Compared to rosette-like structure,
the fine dentritic structure tends to entrap more liquid and form more irregular
shapes during the coalescence upon reheating, and that's why the GR billets
have much more entrapped liquid, and the entrapped liquid has more irregular
shapes than MHD billets.

Obviously, our findings clarify some conflicting claims as to whether the
entrapped liquid is connected to the rest of the eutectic or it is entrapped in
isolation. Still, there are some issues remaining open.

¢ Where do the oxide spheroids come from? They come from the broken
oxide film during billet casting? or from the oxidization due to the addition
of Sr?

e Specifically, we observed that most modified eutectic silicon grows from
the oxide films. Is this a new mechanism for modification of the eutectic
silicon?

Further experiments are being carried out to try to answer these questions.
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temperature range for aluminum semi-solid billets is between 580-590°C.
For grain refined billets, 585-590°C is recommended.

Isothermal holding leads to a speroidization and a coarsening process of
Aipha particies. Analysns on quantitative data points out that an optimum
isothermal holding time is between 2-8 minutes. For grain refined billets,
the upper limit is recommended.

bpecmcally, both processing temperature and isothermal holding have a
significant influence on the entrapped liquid content of GR billets.
Increasing processing temperature or isothermal holding time decreases
entrapped liquid content of GR billets considerably. However, processing
temperature and isothermal holding time show little effect on the
entrapped liquid content of SIMA and MHD billets.
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Figure 2: Schematic diagram of thermal treatments applied, (a)
continuous reheating, and (b) isothermal holding.
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Figure 3: Schematic diagram of an “ideal” semi-solid structure.
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(d) MIT A356 (€) SIMA 357

Figure 4: As-cast microstructure of various semi-solid billets.
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(d) MIT A356 (e) SIMA A357 (f) UBE (Al-Si-Cu)

Figure 5: Semi-solid microstructure of various billets at 580°C.
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(a) MHD A356

(d) MIT A356 (e) SIMA 357

Figure 6: Semi-solid microstructure of various billets at 585°C.
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(d) MIT A356

Figure 10: Semi-solid microstructure of various billets at isothermal
holding for 2 minutes at 582°C .
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(b) GR A356 (c) SiBloy

(d) MIT A356 (e) SIMA 357

Figure 11: Semi-solid microstructure of various billets at isothermal
holding for 32 minutes at 582°C .
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Figure 12: Evolution of entrapped liquid content as a function of
material genealogy and isothermal hold time at 582°C.
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Figure 13: Evolution of particle size as a function of material
genealogy and isothermal hold time at 582°C.
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(a) MHD A356 at 578°C (b) GR A356 at 578°C

(C) Enlarged view of the entrapped liquid

Figure 15: Different morphologies of the entrapped liquid.
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(a) GR A356 at 578°C,
Keller's reagent

(b) Enlarged view of type A entrapped (c) Enlarged view of type A entrapped
liquid, Keller's reagent. liquid, electropolishing.

Figure 16: SEM microstructure of the entrapped liquid, showing (a)
two types of entrapped liquid in nature; (b) extremely fine
eutectic grains, and (c) the nuclei-some oxide spheroids in
each eutectic grain.
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